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Extra Practice Problems 2

Here's a set of a bunch of practice problems you can work through to help prepare for the second
midterm exam. These topics span all of the discrete math topics we’ve covered so far, so feel free
to focus on whichever problems seem most interesting.

Problem One: Slicing an Orange

You have a perfectly spherical orange with fve stickers on it. Prove that there is some way to slice
the orange into two equal halves so that one of the halves has pieces of at least four of the stickers
on it.

Problem Two: Inductive Sets

A set S is called an inductive set if the follow two properties are true about S:

• 0 ∈ S.

• For any number x ∈ S, the number x + 1 is also an element of S.

This question asks you to explore various properties of inductive sets.

i. Find two diferent examples of inductive sets.

ii. Prove that the intersection of any two inductive sets is also an inductive set.

iii. Prove that if S is an inductive set, then ℕ ⊆ S.

iv. Prove that ℕ is the only inductive set that's a subset of all inductive sets. This proves that ℕ
is, in a sense, the most “fundamental” inductive set. In fact, in foundational mathematics,
the set ℕ is sometimes defned as the one inductive set that's a subset of all inductive sets.
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Problem Three: Odd and Even Functions

Up to this point, most of our discussion of functions has involved functions from arbitrary domains to
arbitrary codomains. If we restrict ourselves to functions with specifc types of domains and codomains,
then we can start exploring more nuanced and interesting classes of functions.

Let's suppose that we have a function f : ℝ → ℝ. We'll say that f is an odd function if the following is
true:

∀x ∈ ℝ. f(-x) = -f(x)

This function explores properties of odd functions.

i. Prove that if f : ℝ → ℝ and g : ℝ → ℝ are odd, then g ∘ f is also odd.

ii. Prove that if f : ℝ → ℝ is odd and is a bijection, then f-1 is also odd.

We can defne even functions as follows. A function f : ℝ → ℝ is called even if the following is true:

∀x ∈ ℝ. f(-x) = f(x)

iii. Prove that if f : ℝ → ℝ is an even function, then f is not a bijection.

It turns out that every function f : ℝ → ℝ can be written as the sum of an odd function and an even
function. The next few parts of this problem ask you to prove this.

iv. Let f : ℝ → ℝ be an odd function. Prove that for any r ∈ ℝ, the function r · f : ℝ → ℝ defned as
(r · f)(x) = r · f(x) is also odd.

v. Let f : ℝ → ℝ be an even function. Prove that for any r ∈ ℝ, the function r · f : ℝ → ℝ defned
as (r · f)(x) = r · f(x) is also even.

vi. Let f : ℝ → ℝ be any function. Prove that g : ℝ → ℝ defned as g(x) = f(x) – f(-x) is odd.

vii. Let f : ℝ → ℝ be any function. Prove that h : ℝ → ℝ defned as h(x) = f(x) + f(-x) is even.

viii.Prove that any function f : ℝ → ℝ can be expressed as the sum of an odd function and an even
function.
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Problem Four: Tournament Graphs and Binary Relations

Let's quickly refresh a defnition. A tournament is a contest between some number of players in which
each player plays each other player exactly once. We assume that no games end in a tie, so each game
ends in a win for one of the players. 

Here's a new defnition to work with. If p is a player in tournament T, then we can defne the set W(p) =
{ x | x is a player in T and p beat x }. Intuitively, W(p) is the set of all the players that player p beat. For
example, in the tournament on the left, W(B) = {A, C, D}.

Now, let's defne a new binary relation. Let T be a tournament. We'll say that
p₁ ⊏T p₂ if W(p₁) ⊊ W(p₂). Intuitively, p₁ ⊏T p₂ means that p₂ beat every player
that p₁ beat, plus some additional players.

For example,  in the tournament to the left,  we have that  D ⊏T C  because
W(D) = {A,  E} and  W(C) = {A,  D, E}. Similarly, we know  A ⊏T D since
W(A) = {E} and W(D) = {A, E}.

Prove that if T is a tournament, then ⊏T is a strict order over the players in T.

Problem Five: Tournament Graphs and Hamiltonian Paths

A tournament graph is a directed graph of n nodes where every pair of distinct nodes has exactly one
edge between them. A Hamiltonian path is a path in a graph that passes through every node in a graph
exactly once. Prove that every tournament graph has a Hamiltonian path. For the purposes of this prob-
lem you can consider the empty path of no nodes to be a Hamiltonian path through the empty graph.

Problem Six: A Clash of Kings

Chess is a game played on an 8 × 8 grid with a variety of pieces. In chess, no two king pieces can ever
occupy two squares that are immediately adjacent to one another horizontally, vertically, or diagonally.
For example, the following positions are illegal:

Prove that it is impossible to legally place 17 kings onto a chessboard.

Problem Seven: Induction and Strict Orders

Let A be a set and <A be a strict order over A. Recall from Problem Set Four that a chain in <A is a series
of elements x₁, …, x   ₙ drawn from A such that

x₁  <A  x₂  <A  …  <A  xₙ.

Prove, by induction, that if x₁, …, x  ₙ is a chain in <A with n ≥ 2 elements, then x₁ <A xₙ.  

A

B

C

D

E
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Problem Eight: Strengthening Relations

Let's introduce a new defnition. Let R and T be binary relations over the same set A. We'll say that R is
no stronger than than T if the following statement is true:

∀a ∈ A. ∀b ∈ A. (aRb → aTb)

i. Let R and T be binary relations over the same set A where R is no stronger than T. Prove or dis-
prove: if R is an equivalence relation, then T is an equivalence relation.

ii. Let R and T be binary relations over the same set A where R is no stronger than T. Prove or dis-
prove: if T is an equivalence relation, then R is an equivalence relation.

Problem Nine: More Fun With Friends and Strangers

(From the Fall 2013 midterm exam)

Suppose you have a 17-clique (that is, an undirected graph with 17 nodes where there's an edge between
each pair of nodes) where each edge is colored one of three diferent colors (say, red, green, and blue).
Prove that regardless of how the 17-clique is colored, it must contain a blue triangle, a red triangle, or a
green triangle. (Hint: Use the theorem on friends and strangers.)

Problem Ten: Bijections and Induction

(From the Fall 2014 midterm exam)

Let f : ℕ → ℕ be a function. We'll say that f is linearly bounded if f(n) ≤ n for all n ∈ ℕ.

Prove that if f : ℕ → ℕ is linearly bounded and is a bijection, then f(n) = n for all  n ∈ ℕ. (Hint: You
might find induction useful here.)

A good question to ponder: is this result still true if we replace the codomain of ℕ with ℤ? If so, why? If
not, why not? And if the answer is no, what specifc claim can you point to in your proof that is no
longer true?
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Problem Eleven: Odd Rational Numbers

Let's say that a rational number r is an odd rational number if there exist integers p and q where r = p/q

and q is odd. For example, the number 1.6 is an odd rational number because it can be written as 8/5.

i. To help you get more familiar with the defnition, prove that  3/2 is not an odd rational number.
(Hint: Read the definition closely. What exactly do you need to prove here?)

Consider the following binary relation ~ over the set ℝ:

x~y    if    y – x is an odd rational number.

ii. Prove that ~ is an equivalence relation.

iii. What is [0]~? Express your answer as simply as possible.

iv. Prove that every element of [ √2 ]~ is irrational.

Problem Twelve: Long Paths

(From the Fall 2016 midterm exam)

Let G = (V, E) be a graph where every node has degree at least k for some k ≥ 1. Let P be a simple path
in G that has length less than k. Prove that P is not the longest simple path in G.

Problem Thirteen: Least and Greatest Elements

Let <A be a strict order over a set A. We say that an element x is a least element of <A if for every element
y ∈ A other than x, the relation x <A y holds. We say that an element x is a greatest element of <A if for
every element y ∈ A other than x, the relation y <A x holds.

i. Give an example of a strict order relation with no least or greatest element. Briefy justify your an-
swer.

ii. Give an example of a strict order relation with a least element but no greatest element. Briefy jus-
tify your answer.

iii. Give an example of a strict order relation with a greatest element but no least element. Briefy jus-
tify your answer.

iv. Give an example of a strict order with a greatest element and a least element. Briefy justify your
answer.

v. Prove that every strict order has at most one greatest element.
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Problem Fourteen: Coloring a Grid

You are given a 3 × 9 grid of points, like the one shown below:

Suppose that you color each point in the grid either red or blue. Prove that no matter how you color those
points, you can always fnd four points of the same color that form the corners of a rectangle.

A good follow-up question: is a 3 × 9 grid the smallest grid that guarantees a rectangle?

Problem Fifteen: The Six-Color Theorem

In lecture, we talked about the four-color theorem, which says that every planar graph is 4-colorable. The
proof of the four-color theorem is an incredible exercise in proof by cases, with computers automatically
checking each case.

Although the four-color theorem required computers to prove, it's possible to prove a slightly weaker re-
sult without such aid: every planar graph is 6-colorable. This is called the six-color theorem.

Prove the six-color theorem. You may want to use the following fact, which you don't need to prove: ev-
ery planar graph with at least one node has a node with degree fve or less.

Problem Sixteen: Trees

Recall from lecture that a tree is an undirected, connected graph with no cycles.

A leaf in a tree is a node in a tree whose degree is exactly one.

i. Prove that any tree with at least two nodes has at least one leaf.

ii. In  lecture,  we used complete induction to  prove that  any tree with  n ≥  1 nodes has  exactly
n-1 edges. Using your result from part (i), prove this result using only standard induction.
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Problem Seventeen: Outerplanar Graphs

If G is a graph, the augmentation of G, denoted Aug(G), is formed by adding a new node v★ to G, then
adding edges from v★ to each other node in G. For example, below is a graph G and its augmentation
Aug(G). To make it easier to see the changes between G and Aug(G), we've drawn the edges added in
Aug(G) using dashed lines:

a b

c d

f g

e

a b

c d

f g

e

v★

Aug(G)Graph G

Here's one more defnition: an undirected graph G is called an outerplanar graph if Aug(G) is a planar
graph. In other words, if Aug(G) is a planar graph, then the original graph G is an outerplanar graph.

i. Using the four-color theorem about planar graphs, prove the three-color theorem: every outer-
planar graph is 3-colorable.

Here's a nifty application of outerplanar graphs. Imagine that you have a room in the shape of a poly -
gon. You're interested in placing foodlights in some number of the corners of the room so that the entire
room will be illuminated. You can always illuminate the entire room by putting foodlights in all the cor-
ners of the room, and the challenge is to fnd a way to minimize the number of necessary lights. For ex-
ample, here's one possible room and one set of three foodlights that would illuminate the room:

The Room Three Floodlights A Triangulation

A useful concept for modeling this problem is polygon triangulation. Given a polygon, a triangulation
of that polygon is a way of adding extra internal lines connecting the existing vertices of that polygon so
that (1) the polygon ends up subdivided into non-overlapping triangles  and (2) no new vertices  are
added.  One possible  triangulation  of  the original  room is  shown above.  Importantly,  any foodlight
placed at the corner of a triangle will illuminate everything in that triangle, since there's nothing to ob-
struct the light.

You can think about the triangulation of a polygon as a planar graph: each vertex is a node, and each
line is an edge. But more than that, the triangulation of any polygon is an outerplanar graph, since the
augmentation is always planar. (You don't need to prove this)

ii. Using your result from part (i) and the fact that any polygon can be triangulated, prove that you
can always illuminate a room in the shape of an n-vertex polygon with at most ⌊n/3⌋ foodlights.
(Hint: If you have a 3-coloring of a triangulated polygon, what must be true about any triangle’s
corners?)
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Problem Eighteen: Forced Connectivity

Let  G = (V,  E)  be a  graph  with  n nodes.  Prove  that  if  the degree  of  every  node in  V is  at  least
(n-1) / 2, then G is connected.

Problem Nineteen: Lattice Points

A lattice point in 2D space is a point whose (x, y) coordinates are integers. For example, (137, -42) is a
lattice point, but (1.5, π) isn’t.

Suppose that you pick any fve lattice points in 2D space. Prove that there must be some pair of points in
the group with the following property: the midpoint of the line connecting those points is also a lattice
point.

Problem Twenty: Planar Graphs

Recall from lecture that a planar graph is a graph that can be drawn in the 2D plane such that no two
edges cross one another. The four-color theorem says that all planar graphs are 4-colorable.

A  k-clique is  a  graph  consisting  of  k nodes  that  are  all  adjacent  to  one  another.  Prove  that  the
5-clique is not planar.
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Problem Twenty-One: Colored Cubes*

Suppose that you have a collection cubes of n diferent colors. For simplicity we'll assume that the total
number of cubes you have is a multiple of  n; specifcally, let's suppose that you have  kn total cubes,
where k is some natural number. For example, you might have 30 cubes of six diferent colors, in which
case n = 6 and k = 5. Alternatively, you might have 200 cubes of 40 diferent colors, where n = 40 and k
= 5.

Now, let's suppose that you have n bins into which you can place the cubes, each of which holds exactly
k diferent cubes. Although it may not seem like it, it's always possible to distribute the cubes into the
boxes such that every box is full (that is, it has exactly k cubes in it) and that each box has cubes of at
most two diferent colors. Prove this fact using induction on n, the number of colors.

Some examples might help here. Suppose that n = 4 and k = 3, meaning that there are four diferent col-
ors of cubes, twelve total cubes, and four boxes that hold three cubes each. The goal is then to put the
cubes into the four boxes such that every box has exactly three cubes and contains cubes of at most two
diferent colors. If you have six yellow (Y) cubes, four green (G) cubes, one blue (B) cube, and one ma-
genta (M) cube, here's one way to distribute them:

Y

Y

M

Y

Y

G

Y

Y

B

G

G

G

If you have four yellow (Y) cubes, four green (G) cubes, two blue (B) cubes, and two magenta (M)
cubes, you could distribute them this way:

Y

Y

MY Y

B

G

G

B

M

G G

The result you're proving in this problem forms the basis for the alias method, a fast algorithm for simu-
lating rolls of a loaded die. This has applications in machine learning (simulating diferent outcomes of a
random event), operating systems (allocating CPU time to processes with diferent needs), and computa-
tional linguistics (generating random sentences based on diferently-weighted rules).

* This problem adapted from Exercise 3.4.1.7 of The Art of Computer Programming, Third Edition, Volume II: 
  Seminumerical Algorithms by Donald Knuth.


